摘要: 在三峡水电站短期优化调度中,提出一种全面提升算法搜索寻优能力的加速多蚁群算法(AMACA)模型:通过增加蚁群规模,将多蚁群分别安排到各机组,分工协作,形成时空耦合的二维搜索矩阵;采用加速搜索策略,加快逐代蚁群搜索开始时间,实现信息素的分区反馈调节,加强全局寻优能力;采用邻域搜索策略,通过最优解的小范围振荡,进一步提升水电站开停机和调度策略的可靠性;通过提前生成并嵌套稳定最优表,实现总负荷在机组间的优化分配。运行结果表明:相较于遗传算法、基本蚁群算法和扩展蚁群算法,改进的 AMACA 算法在运行水头为 77.00,86.00m 和 102.00m 三种条件下三峡水电站短期优化调度中,均可获得更好的电站调度运行策略,发电耗水量优化效果较为显著。各台机组负荷均在稳定运行区,可有效保障机组避开空蚀振动区运行,提升三峡水电站机组运行稳定性和短期优化调度方案的稳健性